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* B-1,4-glucanase CenC from Cellulomonas fimi has two tandem Type B CBMs, « Same number of hydrogen TR o = CICBM4TRE (b)5__ eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee TG
CCBM4-1 and CfCBM4-2. Each exhibits the B-jelly roll fold, forming a cleft that bonds formed between 4] (| [[[. | =G 1 MM Commew
binds oligosaccharides and amorphous cellulose. ligand and binding site 5_30-6- HHHTHE L+ =3 ™ MU TR
 Binding studies of C{CBM4-1 and CfCBM4-2 have not conclusively determined the regardless of orientation gz;‘: ALy
orientation of the bound cello-oligomers in the cletft. (after RE’ and NRE’ shift) Voo T v e T
« NMR spectroscopy suggests cellopentaose binds bi-directionally (1). - Protein unaffected by either 55T T AR
« X-ray crystallography has captured only one ligand orientation (2). RE or NRE orientation (©) e (d) e
- Our objective is to understand how the orientation of the ligand affects the binding ~ « Flexibility of the RE and ] ~ =2g%uwiee : F S <o
properties and determine which orientations are preferred; at the same time, these NRE ligands equal within '] o CoBMLIRE ﬁ """"""""" %305]| """"""""""""" m CHooMeTRE
results provide general insight into the mechanisms of protein-carbohydrate error; RE’ and NRE’ f;f?’_g ************* r }{ *********** { ********* m Pl - ][ ][} fffffffffffffffffffffffffffffffffffffffffff
recognition mechanisms. affected by solvent © i e :0_ ffffffffff [ HAEH m ﬂh ffffffffffffffffffffffffffff
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Molecular Dynamics and Free Energy Calculations . Equivalent site interactions o ' 1 Tl T B AN
The cellopentaose may bind to the CBM4s in four possible orientations. These four suggest dynamics are MD results: (a) average hydrogen bonds with ligand per site, (b)
orientations differ from each other based on: same irrespective of root mean square deviation (RMSD) of the protein backbone over

_ _ time, (c) root mean square fluctuation (RMSF) of ligand per site,
* The position of reducing end (RE) of the ligand in the binding cleft orientation. and (d) interaction energy of the ligand with each site.

« The orientation of hydrophilic pyranose side chains in a given binding site Th r i E bili
All four were considered in the case of CfCBM4-1 and two for C/CBM4-2.

The binding free energies, AG.°, of cellopentaose to CfCBM4-1-RE and CfCBM4-1-
NRE are within error and are consistent with isothermal titration calorimetry (ITC) (4).
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@ *‘ / * NMR structure of apo CfCBM4-2 (pink) /4
~ ( suggests cleft is wider than CfCBM4-1 (gray).
* Molecular dynamics simulations were constructed from PDBs in CHARMM. ‘ l\/l[_) sim.ulations illustrate the cleft.width
- Force fields: CHARMM36 w/ CMAP correction for proteins; CHARMM 36 quickly tightens around the docked ligand,
carbohydrates for cellopentaose, and modified TIP3P for water going from 15.3 A across to 9 A — a
* Minimization, heating to 300 K, and 0.1 ns equilibration in the NPT possible chain acquisition mechanism.
« Data collection for 250 ns in the canonical ensemble in NAMD (~27000 atoms) « Dynamic measurements from simulation
 Free energy calculated using free energy reveal similar behavior as in C{CBM4-1.
perturbation with Hamiltonian replica = CBMsLigand,, wemm CBM, + Ligand., * Hydrogen bonds per site, RMSF of the
- ' 1 . . . . . .
.echhantge mc;lefulir cIJIynamlcs in NAMD (3(2I Ligand,.,, Ligand,., ligand per blndmg site, anfj total mtergctpn
System Potential energy expressed T R energy of the ligand with each site is
gggﬁ (e)gtdaetirc];gy aa;wsd rrzzrrasilr?tns, _d;SCpaelgscj:Ogl ' CBMyy, + Ligand,,, wmmmmp CBMeLigand g, equivalent in both CfCBM4-2-RE and
thermodynarr;ic coupling parameters ’ A = 865, =45, CICBM4-2-NRE.
. Multistate Bennett Acceptance Ratio Thermodynamic cycle used to determine  * CfCB!\/I4-2 !s Ilkely. a!so capable of bi-
ligand binding free energy from FEP/A- directional oligomer binding.

used to determine free energy and REMD. “solv” and “vac” refer to solvated

statistical uncertainty of energy ang vacuum (or decoupled) systems,
components. respectively.

* B-sandwich fold is common among CBMs (29 of 69
families) and noted for broad specificity.

« Two binding sites — one on the face of B-sheets and one
on the edge of B-sheets.

« Of deposited structures, 10 families have glycan bound at
face of B-sheets (as in 1GU3) — 34 total structures

 Structural alignment with DALI
« 22 structures with the ligand in CfCBM4-1-RE orientation

Effect of Cellopentaose Symmetry on Binding

 The approximate structural symmetry of oligo-
saccharides accounts for the ability of the protein to
bind the oligomer regardless of directionality.

« Reversing the direction of cellopentaose
(CfCBM4-1-NRE) does not change the structural
symmetry, while rotation of pyranose ring along C1-

C4 axis puts the hydroxymethyl groups on the (ourple) and CfCBMA4-1-RE CfCBM4-1-NRE)
opposite side of chain than that of the structural
orientation disrupting symmetry.
NRE W « Simulation supports the hypothesis that C. fimi CBM4s are capable of binding
cello-oligomers with the pyranose reducing end at either end of the cletft.
The CfCBM4-1 binding groove will not accept < Free energy calculations are remarkably comparable to ITC measurements,
the hydroxymethyl groups in arbitrary sites. suggesting ITC captures an average conformational ensemble of CACBM-4-1-RE
Hydrogen bonding in sites 1 to 3 determines and CfCBM4-1-NRE.
oligomeric acceptance. « MD simulations of CfCBM4-2 extend bi-directional binding observations to loosely

related (36% sequence similarity) familial representatives.

« Bi-directional binding may not be limited to CBM4s, potentially including many
carbohydrate-binding proteins bearing the 3-sandwich fold (currently 29 additional
CBM families).
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Snapshots of CfCBM4-1-NRE’ at (a) 0 ns and
(b) 2 ns of MD simulation.




