Inhibition Of Mammalian Glycoprotein YKL-40 : Identification Of Potential Physiological Ligand

Abhishek A. Kognole, Christina M. Payne Department of Chemical and Materials Engineering University of Kentucky, USA

June 13th, 2015

An Equal Opportunity Universit

KENTUCK

Introduction to YKL-40

Categorized as non-catalytic mammalian glycoprotein

Glycoprotein	Disaccharide of GlcNAc covalently bound at N60	
Mammalian	<i>In vivo</i> secretion by synovial cells, chondrocytes, endothelial and epithelial cells, and tumor cells in mammals.	
Non-catalytic	 Homologous to Glycoside Hydrolase (GH) Family 18 chitinases Substitutions in motif essential for catalysis DXXDXDXE → DXXDXAXL Lectin – a non-catalytic sugar binding protein 	

 Also known as CHI3LI (chitinase 3-like I), HCGP-39 (human cartilage glycoprotein-39)

YKL-40: Biological Function?

- Significance as Biomarker high expression levels associated with chronic inflammatory diseases, multitudes of cancers and more.
- Therapeutic Target promotes tumor angiogenesis and involves in tissue remodeling – potential therapeutic target in several disorders.

Binding Sites of YKL-40

2

More ?

Chitin-bound YKL-40 structure by Houston et al., J. Bio. Chem., (2003) PDB ID : I HJW

Conventional Carbohydrate Binding Site

- YKL-40 has been shown to bind chito-oligosaccharides through X-ray crystallographic study
- **Chitin** polysaccharide of N-acetyl glucosamine (GlcNAc)
- Binding cleft with 9 sugar-binding subsites from +3 to -6
- Potential binding site for similar carbohydrates?

Houston et al., J. Bio. Chem., (2003)

- Affinity for heparin aids in purification of YKL-40.
- Heparin Highly sulfated carbohydrate found in extracellular matrix (ECM).
- No structural evidence of heparin bound at the binding site.
- Complementary features of heparin and surface binding site?

More ?

Protein-protein Interaction of YKL-40

- Specific binding affinity for three types of collagen
- Collagen triple helical protein also comprises most of ECM
- Ambiguous effects of YKL-40 binding on fibril formation of collagen
- No binding site characterization no structural data for this protein-protein complex

Potential Carbohydrate Ligands

Cello-oligomer

Heparan Sulfate

Chitin

GlcNAc GlcNAc

Heparin

β**-1**,4

Ò.

COO

OH

Н

IdoA

Ò.

Ο

ÔSO₃

 CH_2OSO_3

OH

н

GlcNS

 \cap

α-1,4

NHSO₃

١n

Hyaluronan

Chondroitin Sulfate

Computational Approach Docking of ligand in the binding cleft and setup the Ι. protein-ligand complex. Solvation and energy minimization of protein-ligand-2. solvent system. 3.

- Heating and equilibration of the system for 100 ps using CHARMM.
- Production run of molecular dynamic simulation for 4. 250 ns in canonical ensemble using NAMD.
- Binding free energy calculation by FEP/ λ -REMD. 5.
- Analysis of the trajectories and comparison of ΔG for 6. all ligands.

Over the 250 ns simulation

Cellohexaose

Hyaluronan

Exit the binding cleft

Who Is Welcome In The Cleft?

at 250 ns

Hyaluronan : Potential Physiological Ligand ?

Analysis of polysaccharide binding dynamics

Hyaluronan : Potential Physiological Ligand ?

Relative affinity in terms of absolute binding free energy

Absolute binding free energy of chitin, glucose and hyaluronan to YKL-40 calculated by FEP/λ-REMD method.

- Cellohexaose out of race due to low potential for enthalpic contribution.
- YKL-40 binds chitin with similar affinity as other GH Family 18 chitinases. (Humre AG, Jana S et. al. -Submitted)
- Hyaluronan exhibits enthalpic contributions similar to chitin, which is likely related to hydrogen bond formation.
- Negative charge on hyaluronan significantly contributes to the electrostatic interactions, accounting for the difference between chitin and hyaluronan.

0 ns

What Happens To Heparin?

25 ns

0 ns

Starting From Different Coordinates!

What Amino Acids Comprise This Site?

Solution structure of Heparin

Comparison with heparin-binding consensus sequences

$X-B-B-X-B-X-B \rightarrow G-R-R-D-K-Q-H$

where B is basic amino acid and X is neutral or hydrophobic amino acid residue.

Cardin and Weintraub, Arteriosclerosis (1989)

Heparin Binding : Specific or Non-specific ?

Heparin (white stick representation) Putative heparin-binding site of YKL-40 (blue surface representation) Primary binding site marked by an aromatic residue (pink surface representation)

Protein-protein Interactions of YKL-40 : Affinity For Collagen

- YKL-40 is mostly expressed in connective tissue especially in cartilage.
- Collagen fibers are significant components of connective tissue accounting to almost 25% of total protein in mammalian body.
- Unique isoforms of YKL-40 extracted from different cells display ambiguous effects on collagen fibril formation.

Collagen

- Collagen is macromolecular protein with triple helical structure
- basic Gly Pro Hyp repeating amino acid sequence
- 27 different types of collagen
- I0/3 and 7/2 helical symmetries
- Four collagen peptides selected to represent helical and amino acid variability

Collagen: Representative Peptide Models

• ICAG

- Basic model consisting only Gly-Pro-Hyp repeatedly, with one mutation of Gly \rightarrow Ala and relaxed 7/2 symmetry
- ICAG_unmut
 - Same as ICAG model without mutation with perfect 7/2 symmetry.

• IBKV

 Collagen-like peptide consisting sequence, GITGARGLA, in middle from human type III collagen with 10/3 symmetry

• IQ7D

• Collage-like peptide consisting GFOGER motif known to bind the integrin $\alpha 2\beta 1$ -l receptor protein with mixed symmetry

Hydroxyproline

Where Is The Collagen Binding Site?

Molecular shape complementarity docking calculations predict collagenlike peptides can bind to YKL-40 in TWO possible orientations.

PatchDock - http://bioinfo3d.cs.tau.ac.il/PatchDock/

Binding Dynamics at Site A and Site B

Site B (collagen in cyan sticks)

	Site A	Site B
ICAG	Unstable binding	Does not bind
ICAG_unmut	Stable binding	Stable binding
IBKV	Stable binding	Does not bind
IQ7D	Very stable binding	Very stable binding

Preferential Binding to Collagen With Integrin Binding Motif (GFOGER) at Site A

Potential of mean force (PMF) obtained from umbrella sampling MD simulations of the YKL-40-collagen system.

Interactions With GFOGER Motif

Binding Site A

Affinity for Collagen at Site A vs Site B

Potential of mean force obtained from umbrella sampling MD simulations of the YKL-40-collagen system.

Conclusions

- YKL-40 binds hyaluronan with the highest affinity, followed by chitin.
- Positively charged heparin binding domain responsible for non-specific surface binding.
- YKL-40 likely binds collagen at two possible sites through the formation of salt bridges and stacking interactions with Pro & Hyp.
- These findings not only identify potential physiological ligands of YKL-40 but also provide better viewpoint towards understanding the functions of YKL-40 in mammalian cells.

Acknowledgements

Funding

UNIV

KENTU

KENTUCKY SCIENCE AND ENGINEERING FOUNDATION

Computational Resources

Extreme Science and Engineering Discovery Environment Advisor -

Dr. Christina M. Payne

Lab mates -

- Suvamay Jana
- Dr. Inacrist Geronimo
- Yue Ye

Swedish University of Agricultural Sciences

Questions?

Extra Slides

Thermodynamics of Carbohydrate Recognition

$$\Delta G = -RT \ln(K_a) = \Delta H - T\Delta S$$

ΔH (enthalpic contribution)	ΔS (entropic contribution)
VDWCoulombicHydrogen bonding	 Loss of translational and conformational freedom Solvation effects

Ligand Binding Free Energy Calculation

Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/λ-REMD)

 $CBM * Ligand_{(solv)} \xrightarrow{\Delta G_1} CBM_{(solv)} + Ligand_{(vac)}$

$$Ligand_{(solv)} \xrightarrow{\Delta G_2} Ligand_{(vac)}$$

 $CBM_{(solv)} + Ligand_{(solv)} \xrightarrow{\Delta G_b} CBM * Ligand_{(solv)}$

$$\Delta G_{b} = \Delta G_{2} - \Delta G_{1}$$

FEP/λ-REMD

• Free Energy Perturbation $\Delta G(A \to B) = G_B - G_A = -k_B T \ln \langle \exp\left(-\frac{E_B - E_A}{k_B T}\right) \rangle_A$ • Replica Exchange Molecular Dynamics $U = U_0 + \lambda_{rep} U_{rep} + \lambda_{dis} U_{dis} + \lambda_{elec} U_{elec} + \lambda_{rstr} U_{rstr}$

YKL-40 – Surface – Residue Type

Native Contacts for Umbrella Sampling

 $p(i) = weight of contact = \frac{No. of frames it's present in}{Total no. of frames}$

State of Contact =
$$x(i) = \frac{1}{(1 + \exp(20 \cdot (d(i) - 12.0)))}$$

 $Reaction \ Coordinate \ (\rho) = \frac{\sum p(i) \cdot (1 - x(i))}{\sum p(i)}$