Inhibition Of Mammalian Glycoprotein YKL-40 : Identification Of Potential Physiological Ligand

Abhishek A. Kognole

Department of Chemical and Materials Engineering University of Kentucky

November 20th, 2014

An Equal Opportunity Universit

ΙK

KENTUCK

Introduction to YKL-40

Categorized as non-catalytic mammalian glycoprotein

Glycoprotein	Disaccharide of GlcNAc covalently bound at N59	
Mammalian	<i>In vivo</i> secretion by synovial cells, chondrocytes, endothelial and epithelial cells, and tumor cells in mammals.	
Non-catalytic	 Classified as Glycoside Hydrolase (GH) Family 18 chitinases based on protein sequence Substitutions in motif essential for catalysis DXXDXDXE → DXXDXAXL Lectin – a non-catalytic sugar binding protein 	

 Also known as CHI3LI (chitinase 3-like I), HCGP-39 (human cartilage glycoprotein-39)

YKL-40: Biological Function?

- Significance as Biomarker high expression levels associated with chronic inflammatory diseases, multitudes of cancers and more.
- Therapeutic Target promotes tumor angiogenesis and it's role in tissue remodeling leaves it as an potential therapeutic target in several disorders.

Binding Sites of YKL-40 2? More ? Chitin-bound YKL-40 structure by Houston et al., J. Bio. Chem., (2003) PDB ID : I HJW

Traditional Binding Cleft for Carbohydrates

- Chitin is been reported as natural substrate from X-ray crystallographic study
- Chitin polysaccharide of N-acetyl glucosamine (GlcNAc)
- Binding cleft with 9 sugar-binding subsites from +3 to -6
- Potential binding site for similar carbohydrates?

Putative Surface Binding Site for Heparin

- Protein purification of YKL-40 uses its binding affinity for heparin
- Heparin Highly sulfated carbohydrate and is part of Extra Cellular Matrix (ECM) along with YKL-40.
- No structural evidence of Heparin bound at the binding site.
- Complimentary features of heparin and protein surface?

More ?

Protein-protein Interaction of YKL-40

- Specific binding affinity for three types of collagen
- Collagen triple helical protein also comprises most of ECM
- Ambiguous effects of YKL-40 binding on fibril formation of collagen
- No binding site characterization with lack of structure of bound complex

Potential Carbohydrate Ligands

Chitin

Heparin

Hyaluronan

Heparan Sulfate

Chondroitin Sulfate

Computational Approach

- 1. Docking of ligand in the binding cleft and setup the protein-ligand complex.
- 2. Solvation and energy minimization of protein-ligandsolvent system.
- 3. Heating and equilibration of the system for 100 ps using CHARMM.
- Production run of Molecular Dynamic simulation for 250 ns with NAMD.
- 5. Binding free energy calculation by FEP/ λ -REMD.
- 6. Analysis of the trajectories and comparison of ΔG for all ligands.

Over the 250 ns simulation

Who Is Welcome In The Cleft?

at 250 ns

Hyaluronan : Potential Physiological Ligand ?

Analysis of Polysaccharide Binding Dynamics

Hyaluronan : Potential Physiological Ligand ?

Relative affinity in terms of absolute binding free energy

Absolute binding free energy of chitin, glucose, and hyaluronan to YKL-40 calculated by FEP/ λ -REMD method.

- Glucose (cello-oligosaccharide) out of race due to low potential for enthalpic contribution.
- Chitin being natural substrate demonstrates ΔG resembling to that of family 18 chitinases.
- Hyaluronan shows most of the enthalpic contributions from chitin also according to binding dynamics
- Negative charge on hyaluronan appears to be additionally contributing through electrostatic contributions and solvation effects.

What Happens To Heparin?

Starting From Different Coordinates!

What is this site comprised of ?

Solution structure of Heparin

Comparison with Heparin-binding consensus sequences

ARG

HIS

$X-B-B-X-B-X-B \rightarrow G-R-R-D-K-Q-H$

where B is basic amino acid and X is neutral or hydrophobic amino acid residue.

Cardin and Weintraub, Arteriosclerosis (1989)

Need Of Statistically Significant Conformation

Heparin (green stick representation) Putative heparin-binding site of YKL-40 (blue surface representation) Primary binding site marked by an aromatic residue (pink surface representation)

Protein-protein Interactions of YKL-40 : Affinity for Collagen

- YKL-40 is mostly expressed in connective tissue especially in cartilage.
- Collagen fibers are significant components of connective tissue accounting to almost 25% of total protein in mammalian body.

 Different isoforms of YKL-40 extracted from cartilage and chondrocytes display ambiguous effects on collagen fibril formation.

Bigg et al., J. Bio. Chem. (2006)

Collagen :

- Collagen is macromolecular protein with triple helical structure
- basic Gly Pro Hyp repeating amino acid sequence
- 27 different types of collagen
- I0/3 and 7/2 symmetries of helix
- Selection of 4 model collagen peptides to represent collagen in entirety

Collagen: Representative Peptide Models

• ICAG

- Basic model consisting only Gly-Pro-Hyp repeatedly, with one substitution of Gly \rightarrow Ala and relaxed 7/2 symmetry
- ICAG_unmut
 - Same as ICAG model without substitution with perfect 7/2 symmetry.

• IBKV

 Collagen-like model peptide consisting sequence, GITGARGLA, in middle from human type III collagen with 10/3 symmetry

IQ7D

• Model peptide consisting GFOGER motif known to bind the integrin $\alpha 2\beta I$ -I receptor protein with mixed symmetry

Where Is The Binding Site For Collagen?

Molecular shape complementarity docking calculations predict collagen-like peptides will bind to YKL-40 in two possible orientations.

Binding Dynamics at Site A and Site B

Site B (collagen in cyan sticks)

	Site A	Site B
ICAG	Unstable binding	Does not Bind
ICAG_unmut	Very Stable binding	Stable binding
IBKV	Stable binding	Unstable binding
IQ7D	Very stable binding	Stable binding

Preferential Binding to Integrin Binding motif

Potential of mean force obtained from umbrella sampling MD simulations of the YKL-40-collagen peptide system.

Conclusions

- Chitin and hyaluronan appear to be preferential physiological ligands of YKL-40.
- Confirmation of the non-specific interaction of heparin with the putative heparin-binding domain as suggested by previous studies.
- Probable binding sites for collagen and comparison for dynamics and affinity over different models adds to knowledge about diverse functions of YKL-40.
- These findings not only identify physiological ligands of YKL-40, they enable future efforts to rationally guide design of YKL-40 inhibitors.

Acknowledgements

Funding

KENTUCKY SCIENCE AND ENGINEERING FOUNDATION

Computational Resources

Center for Computational Sciences

Extreme Science and Engineering Discovery Environment

Principal Investigator : Dr. Christina M. Payne

Suvamay Jana

Extra Slides

YKL-40 – Surface – Residue Type

Native Contacts for Umbrella Sampling

 $p(i) = weight of contact = \frac{No. of frames it's present in}{Total no. of frames}$

State of Contact =
$$x(i) = \frac{1}{(1 + \exp(20 \cdot (d(i) - 12.0)))}$$

 $Reaction \ Coordinate \ (\rho) = \frac{\sum p(i) \cdot (1 - x(i))}{\sum p(i)}$